The Smart Pet Feeder Thursday April 24, 2008

Rachel Heil - heilr@wit.edu
Kristine McCarthy - mccarthyk8@wit.edu
Filip Rege - regef@wit.edu
Alexis Rodriguez-Carlson rodriguezcarls@wit.edu

Introduction

- Market Research:
 - \$41 billion spent in the pet care industry in 2007 ("Industry Statistics & Trends". American Pet Products Manufacturers Association, Inc.)
 - 63% of US households include a pet as of 2007 ("Industry Statistics & Trends". American Pet Products Manufacturers Association, Inc.)
 - After consumer electronics, pet care is the fastest growing industry in the US ("The Pet Economy". Business Week.)
 - 40% of American pets are overweight ("The Overweight Pet." The PetCenter.Com.)

Introduction

- Problems that pet owners face:
 - Portion control
 - Weight management
 - Feeding on a set schedule

The ERGO 8 day feeder

Objectives

- Complaints to be addressed by The Smart Pet Feeder
 - Pets flip over the feeder
 - Flimsy construction
 - Feeder turns too slowly
 - Unreliable feeding
 - Difficult to program
 - Cover rotates
 - Battery life
 - No control over access

The Smart Pet Feeder

- What will it do?
 - Enable a pet owner to feed their pets at specific time of day without being physically present at feeding time
 - Allow a pet owner to feed a number of different pets different types of food without the possibility of one pet eating another pet's food

Overall Design

Feeder Enclosure

Requirements

- Sturdy construction
- Restrict pets from accessing food for later feedings
- Allow user to view later feedings

Feeder Enclosure

- How we chose the shape
 - Seven flat sides are easy to make
- How we chose the materials

- Requirements
 - Turn the tray with the combined weight of the cups and food
 - Be able to turn one cup forward as well as backward
 - Interface with the microcontroller easily
 - Isolate the load from the shaft of the motor

- Tray support system
 - Requirements
 - Support the weight of the tray and food
 - Allow tray to rotate smoothly
 - Components
 - Aluminum plate
 - Turntable
 - Delrin legs

- Driver Chip
 - Supplies current to motor that the microcontroller is unable to supply
 - Protects the microcontroller from the high current of the motor

- Programs
 - Clockwise rotation
 - Reveals a new bowl of food at the user programmed time
 - Counterclockwise rotation
 - Rotates the bowl back to an empty position when the RFID reader senses the forbidden pet

Control System

- Three main subsystems
 - Pet Sensing
 - Time Keeping/Display

Consists of an RFID reader and an RFID tag

- Requirements
 - Recognize forbidden pets
 - Be able to tell the microcontroller that the pet is there
 - Work quickly enough to allow minimal food consumption

- Health Concerns
 - Cancer in lab rats
 - Only tested with implantable chips
 - Many say this would happen with other animals
 - FDA approved for human implantation
 - Some veterinarians believe that the small size of the animals makes them more susceptible than larger animals
 - Tag can be sheilded to alleviate these converns

PROGRAM

- Tells the microcontroller that the forbidden pet is present
 - Tells the motor that it must turn
 - After the pet has moved away, no longer senses the tag and tells the motor it is OK to rotate back

RFID Program

Bowl Program

Pet Detect Program

- RTC
 - We have chosen not to use it
 - Complicated programming
 - Odd interfacing with microcontroller
 - Given more time, it most likely would have been usable

- Alarm clock chips
 - Extremely easy to interface
 - Some capable of outputting multiple alarms
 - Has dedicated pins for every function
 - Minute pins
 - Hour pins
 - Segment pins
 - Colon out pin

- New Requirements
 - Directly interfaces with the 7-Segment LED display
 - Eliminates tons of code
- Requirement fulfillment
 - Allows user to program feeding time
 - Tells the motor to rotate

Feeding Time

- Requirements
 - Interface with motor
 - Interface with RFID reader
 - Interface with timekeeping system

- WHY CML12S for development?
 - -91 I/O pins
 - Not using RTC anymore
 - 4 kB of EEPROM
 - 512 kB of Flash EEPROM

- MAIN PROGRAM
 - Calls the pet detect and feeding time programs

What Works

- Pet sensing system
 - Restricts forbidden pet
 - Sets our product apart
- Enclosure prevents pets from flipping it over or reaching the future feedings in any way
- Motor turns specified distance

Remaining Issues

- RFID tag is not as quick as we would have liked
 - Aluminum has reduced the sensing range of the RFID reader
- Tray moves less freely and with more resistance than we would like
- Alarm function

Next Phase of Development

- Use actual alarm clock chip
- Find material for enclosure that doesn't reduce the sensing range
- Improve tray movement

Conclusion

- Majority of our original design goals were met:
 - Simple user interface
 - Allows for portion control
 - Prevents future feedings from being reached
 - Prevents a forbidden pet from eating

Acknowledgements

We would like to thank

- Dr. Salah Badjou (Professor, Wentworth Institute of Technology)
- Christine Cattoggio (Administrative Assistant, Axis New England)
- Joseph Diecidue (Technician, Wentworth Institute of Technology)
- Roger Forester (Technician, Axiom Manufacturing)
- Dusty Nidey (Technician, Axiom Manufacturing)
- Captain Timothy Johnson (Professor, Wentworth Institute of Technology)
- Ross Kaplan (Student, Wentworth Institute of Technology)
- Peter S. Rourke (Professor, Wentworth Institute of Technology)
- Noah Vawter (Research Assistant, MIT Media Lab)
- Robert Villanucci (Professor, Wentworth Institute of Technology)
- Sanley Yuen (Application Engineer, LIN Engineering)

Selected References

- RFID Reader Module (#28140)." Parallax, Inc. Rocklin: 2005.
- "DS1286 Watchdog Timekeeper." <u>Jameco.com</u>. 03 Mar. 2008.
 http://www.jameco.com/webapp/wcs/stores/servlet/ ProductDisplay?langId=-1&storeId=10001&catalogId=10001&productId=133 444>
- "1.8" Size 17 Super Torque Motor." Lin Engineering. Santa Clara.
- "SLA7024M, SLA7026M, and SMA7029M High-Current PWM, Unipolar Stepper." Allegro. Worcester: 1994.

Questions or comments? Thank you!!

Contact Information

Rachel Heil heilr@wit.edu 802-338-0165 Filip Rege regef@wit.edu 617-230-0196

Kristine McCarthy mccarthyk8@wit.edu 508-280-2562

Alexis Rodriguez-Carlson rodriguezcarls@wit.edu 617-359-9019

