

The Smart Pet Feeder: Progress Report 2

A Progress Report on the Design and Building of an Automated Pet Feeder Capable of Preventing One Pet

From Eating Another Pet’s Food

Submitted to Professor Salah Badjou

on March 31, 2008

by

Rachel Heil

802-338-0165

heilr@wit.edu

68 Louis Prang St.

Boston, MA 02115

Kristine McCarthy

508-280-2562

mccarthyk8@wit.edu

610 Huntington Ave.

Box 1079

Boston, MA 02115

Filip Rege

617-230-0196

regef@wit.edu

8 Barton St.

Somerville, MA 02144

Alexis Rodriguez-Carlson

617-359-9019

rodriguezcarls@wit.edu

143 Watertown St. #2

Watertown, MA 02472

WENTWORTH INSTITUTE OF TECHNOLOGY

 ELMC 461-03/04 ELECTROMECHANICAL DESIGN

Page 2 of 108

Table of Contents:

Introduction:.. 4

Progress-to-date: ... 8

The Control System: ... 8

The Pet Sensing System:... 9

The Processing System: .. 12

The Time Keeping System: .. 15

The Display System: ... 19

The IDE:.. 21

The Program: .. 22

Program Algorithms: .. 22

The Motor System: ... 31

The Motor Driving System: .. 31

The Tray Support System: .. 34

The Feeder Enclosure: .. 35

Problem Areas:.. 37

Plans for the Next Reporting Period: .. 38

Schedule Status: .. 41

Project References: ... 44

Appendices:... 48

Appendix A: Preliminary C Language RFID Program.. 49

Appendix B: Preliminary C Language Main Program .. 52

Appendix C: C Language LCD Programs ... 55

Appendix D: Preliminary C Language Feeding Time Program .. 60

Page 3 of 108

Appendix E: Preliminary C Language Pet Detect Program... 63

Appendix F: Preliminary C Language Motor Rotation Program... 66

Appendix G: Microcontroller Block Diagram and Datasheet ... 69

Appendix H: Motor Driver Datasheet.. 84

Appendix I: RFID Datasheet ... 91

Appendix J: Real Time Clock Chip Datasheet .. 97

Appendix K: Motor Datasheet ... 105

Appendix L: 24V Power Supply Datasheet ... 107

Page 4 of 108

Introduction:

(Project manager: Alexis Rodriguez-Carlson)

 This is the second progress report* detailing the process of designing and building a prototype of the

Smart Pet Feeder, an automated pet feeder that will be suitable for use by cats and small dogs. The Smart Pet

Feeder will solve two problems that pet owners face. These problems are:

1. Making sure that each pet has access to a healthy amount of food throughout the day, regardless of the

owner’s schedule

2. Making sure that each pet eats only its own food

 Though there are a variety of products on the market that solve the first problem, there are none that

address the second. The Smart Pet Feeder will give pet owners a solution to both problems, thereby improving

the lives of both pets and owners by allowing the owner to:

1. Reliably provide food to a pet at the time the owner wishes

2. Keep the pet from reaching the food stored for later feedings

3. Restrict an unauthorized pet (called the “forbidden pet”) from accessing the food in the feeder

 The Smart Pet Feeder will look like the model in Figure 1. It will consist of a tray that holds 6 cups of

food and will be mounted to a motor. The motor and the base will be inside an enclosure that will display only

one bowl of food at a time. At predetermined times (which are programmable by the owner) the tray will rotate

and reveal a fresh cup of food.

* We have attempted to repeat as little information from the first progress report as possible, however some information is repeated for

the sake of clarity.

Page 5 of 108

Figure 1: Model of the Smart Pet Feeder

 The Smart Pet Feeder is designed to feed only one pet. To make sure that no forbidden pet eats the food

in this feeder, there will be a radio frequency identification (RFID) reader mounted to the enclosure of the

feeder in front of the revealed bowl (see Figure 1). This reader will be paired with a tag on the forbidden pet’s

collar. When the reader receives the signal from the tag it will trigger the motor to rotate so that the spot on the

tray with no bowl, the “blank spot”, is exposed, thus keeping the forbidden pet from eating.

 The Smart Pet Feeder consists of three main systems: the Control System, the Motor System, and the

Feeder Enclosure (see Figure 2). Each system has roles that it must fulfill. The Control System’s roles are:

1. To rotate the tray to a new dish at a specified time

2. To rotate the tray to the blank spot if the forbidden pet approaches the feeder

3. To keep and display an accurate real-time clock

4. To allow the owner to easily set both the current time and the time the feeder will rotate to reveal fresh

food

The Motor System’s roles are:

1. To receive commands from the microcontroller

2. To be able to rotate the fully loaded tray an exact distance

3. To not allow the full weight of the tray to sit on the shaft of the motor

Page 6 of 108

The Feeder Enclosure’s roles are to:

1. Be heavy enough so that a pet cannot turn it over

2. To close securely enough that the pet cannot open it and access the food

3. To be opened easily so that the owner can refill the dishes

4. To protect the electronics inside of it

5. To assure that all of the parts of the feeder that touch food are washable.

A block diagram showing all of the systems and how they interact with one another can be found in Figure 2.

Page 7 of 108

Figure 2: System Block Diagram

Page 8 of 108

Progress-to-date:

 Since the systems that make up the Smart Pet Feeder are so distinct, it is easiest to discuss them one at a

time. This section will briefly recap the requirements for each section [1] and give an update on the progress of

that system since the submittal of the first progress report [1]. It will start with the Control System, progress to

the Motor System, and end with the Feeder Enclosure.

The Control System:

 The Control System consists of several subsystems: the Pet Sensing System, the Processing System, the

Time Keeping System, the Display System, and the Motor Driving System (this subsystem is also part of the

Motor System and will be discussed later). This section will detail the requirements for each subsystem in

Figure 3, the criteria used to select components, and discuss any changes in the status of this system since the

progress report submitted on March 5, 2008 [1].

Figure 3: The Control System

Page 9 of 108

The Pet Sensing System:

(Primarily responsible team members: Kristine McCarthy, Alexis Rodriguez-Carlson)

 The Pet Sensing System fulfills the design objective to create a product that can distinguish between

different animals in order not to allow the forbidden pet to eat from the feeder. In order to do this it is necessary

for the forbidden pet to wear an emitter on its collar that a sensor on the feeder can detect and react to.

 Our requirements for the emitter/sensor pair are:

1. That the emitter be small enough to be worn comfortably on the pet’s collar

2. That the emitter does not pose any health risks to the pet

3. That the sensor fit on the feeder

4. That the sensor be able to interface with the microcontroller

5. That the sensor be able to react to the emitter while the pet is still 4-6 inches away from the feeder

 We have chosen an RFID Reader / tag combination for the pet sensing system [1]. We have two

different types of tags, one of which will be placed on forbidden pet’s collar (see Figure 4 and Figure 5).

The tag pictured in Figure 4 is passive, and the tag in Figure 5 is active. For a detailed description of the

differences between passive and active tags, see [1].

Figure 4: Passive RFID sticker [2]

Page 10 of 108

Figure 5: Active RFID Fob [2]

 After testing both tags, we have found that the RFID Reader starts responding to the passive tag when it

is about 2.5 – 3 inches away and the active tag when it is 4 – 5 inches away. At this time, we are still unclear

about whether the extra distance gained by using the active tag is worth the possible health considerations [1].

If we do decide to use the active tag, we will attempt to shield the animal from the radio waves with the help of

Professor Badjou.

 When testing the RFID Reader, we discovered that we had misunderstood the way the RFID Reader

would react to the presence of the tag. We had expected that the Reader would change the logic state of the

SOUT pin if any tag were present. In fact, the SOUT pin is high if no tag is present, and if a tag is present, then

a “unique ID will be transmitted as a 12-byte ASCII string via the TTL-level SOUT (Serial Output) pin” [2].

For our purposes, we are interested only if any RFID tag is present and not if a particular one is present.

Therefore, we have written the code so that it will take a number of readings from the SOUT pin and store those

values as variables. Since some of those readings will be zeros, when all of the stored values are ANDed

together the result will be zero, which will be stored as variable called “tag”. Then, the program only needs to

check the condition of “tag” to decide whether the forbidden pet is near or not. This will make the

programming both easier to write and faster. Please see the section on software for further details.

Page 11 of 108

Figure 6: RFID Reader Module [2]

 We have also decided that the /Enable pin does not need to go to a data port on the CML12S, and will

instead be grounded. This is because the Reader is active when the /Enable pin is low, and we want the reader

to be active at all times to provide the quickest response to the forbidden pet’s approach.

 Now that we have the RFID Reader and tags in hand, we are completely confident that they satisfy all of

the requirements of the pet sensing system. Both of the tags are no bigger than any of the other tags typically

worn on a pet’s collar. We can use either the passive tag or shield the active tag and feel confident that the tag

will not have an adverse affect on the pet’s health. The RFID Reader is small enough to be mounted on the pet

feeder enclosure. We have connected the RFID Reader to the microcontroller and successfully received

information from it. Lastly, we have tested the RFID Reader with the tags and learned that while the read range

is not as great as we would have liked it to be, it is large enough for our purposes.

Page 12 of 108

The Processing System:

(Primarily responsible team member: Alexis Rodriguez-Carlson)

 The Processing System is responsible for the integration and control of the Control System and the

Motor System, as well as the different subsystems that make up the Control System. It consists of two parts: a

microcontroller and the program. The requirements for a microcontroller are:

1. It must be capable of interfacing with all of the other components that make up the Smart Pet Feeder

2. It must have enough memory to hold the programming required to control all of the components

3. It must have enough RAM to run the program

4. It must be affordable

Figure 7: The Axiom CML12S-DP512 Development Board

 There have been no changes in our choice or use of the microcontroller [1]. However, there have been

some slight changes to the Electrical and Control Schematic (see Figure 8). These changes are:

1. That the resistor and capacitor values for the motor driving circuit have been determined (see the

Motor System section for more details)

Page 13 of 108

2. That the /Enable pin of the RFID reader now goes to ground (see the Pet Sensing System section for

more details)

3. That all of the lines which had been going to Port B are now in Port T (see the section on the Time

Keeping System for more details)

 These changes have helped us to fulfill the requirements for the microcontroller as discussed above. We

did have a slight hiccup using the CML12S. When downloading some programs, the dotted line, which traveled

across the terminal window to symbolize the progress of the download, would stop and the terminal window

would freeze. We thought this meant that the program was not downloading, but in fact the program was

downloading and the microcontroller was just not returning a “done” statement to indicate that the transfer was

successful, even though it was. To run the program we just had to restart the CML12S and enter the “go 4000”

command, and the program ran fine.

 It will be the Main Program that determines the operation of the feeder. This program will initially

determine if the override switch is on or off. Based on the result of this, the program will determine which

subroutine to call. If the override switch is on then the program will run the Clockset subroutine. If it is off

then it will run the pet detect subroutine. The main program is also where all functions will be declared, as well

as any variables that need to be declared outside of their individual functions. Lastly, the main program is

where all of the input and output ports that are used will be configured as inputs or outputs as specified in the

control schematic. For more details, please see the Program section of the report, as well as Appendix B.

 The CML12S continues to satisfy all of our criteria for the microcontroller. It interfaces with all of the

other components that make up the Smart Pet Feeder. It has ample memory to hold the programming required

to control all of the components and more than enough RAM to run the programs, and has not required us to

spend any money to make it work properly.

Page 14 of 108

Figure 8: Electrical and Control Schematic

Page 15 of 108

The Time Keeping System:

(Primarily responsible team member: Kristine McCarthy)

 One of the subsystems of the Control System is the Time Keeping System. This is the portion of the

design that will keep time, allow the user to program when the feeder should rotate in order to reveal a fresh

bowl of food, and provide incremental timing. The criteria that this system must meet are:

1. To allow the user to set the time on the clock

2. To tell the feeder to rotate at specific times during the day to reveal fresh food

3. Use a toggle switch as a manual override to prevent the bowls from rotating

4. When the toggle switch is turned off, allow the program to rotate the bowl to the blank spot

5. Provide incremental timing

 Since the last reporting period, significant progress has been made in this system. First, we now

understand how to communicate with the Real Time Clock (RTC) chip. The DS2186 comes in a 28-pin

encapsulated package. In this package, there are six address pins, as seen in Figure 9. These pins allow the user

to specify the register of the chip the user is accessing [3]. These pins caused confusion because we did not

understand why there were only six pins for the DS2186’s 63 registers (see Figure 11).

Page 16 of 108

Figure 9: RTC Pin Assignments [3]

 After studying the data sheet extensively, we realized that communication with the RTC is always in

Binary Coded Decimal (BCD) [3]. BCD is numbering system such as binary and hexadecimal. In this system,

each digit of a number is broken down into a four digit binary number and then written as a binary number,

hence the name “binary coded decimal.” For example, the address of the largest register, as can be seen in

Figure 11, is hexadecimal 3F, 63 in decimal, or 00111111 in BCD. This means that you can tell the

microcontroller which of the 63 registers to access with only six pins by using BCD. For example, in order to

set the hour, the address pins would first need to be set to register 4 (see Figure 11), or 00000100 in BCD, then

programming can begin.

Figure 10: Decimal to Hexadecimal to Binary Conversion Chart [4]

 In order to program the chip, several things need to happen. As stated, the register needs to be specified

on the address pins, but even before that, the output enable, chip enable, and write enable pins need to be

Page 17 of 108

configured correctly. There are separate configurations for reading and writing. In order to write, the write

enable and chip enable pins must be in the active, or low, state. Then the data that is to be written to the chip

(time) is input via the data input/output pins [3].

Figure 11: RTC Registers [3]

 Another thing that we have accomplished with the RTC is to understand how the Watchdog Alarm

works. This feature acts as a counter that is capable of counting down a maximum time of 99.99 seconds. In

Page 18 of 108

order to use this feature, all you have to do it is set the Watchdog Alarm registers, C and D, to the amount of

time that you want to be counted down [3]. In our case, this is 30 seconds and will be used after the RFID has

sensed that the forbidden pet has approached the feeder and the motor has rotated the bowl to the blank spot.

When the countdown reaches zero, the Watchdog Interrupt Output goes into the active state and sends a signal

to Interrupt A (INTA) of the chip [3] which can also be seen in Figure 11. The other interrupt (INTB) is used

for the time of day alarm. It is utilized when the values in the alarm registers match the values in the time

registers [3]. Both interrupts will then be sent to Port P on the CML12S where they can be used in other

programs. An interrupt is sent when the interrupt output of the chip enters the active state, which sends a high

signal [3] to the pin on the CML12S; we have chosen to use Port P for this purpose. The pin that the interrupt is

connected to will then go from a logic 0 to a 1 indicating the interrupt has occurred.

 As mentioned earlier, we are going to use the RTC’s counter feature. We had believed that a program

was going to be necessary to control its operation, but after having rethought how the Watchdog Alarm works,

we have determined that it is unnecessary. We realized that after the delay is programmed into the RTC, the

chip continually counts down to 0 and sends a signal to let the chip know that an alarm has occurred, so there is

no need for coding [3].

 So far, this information only covers how the chip is accessed by our program, not how the user will be

able to set the clock and meal times. This will be accomplished using three buttons. These buttons will have

different functions depending upon what portion of the program the user is in. For more specific details, please

see the Program Section of the report.

 One problem we encountered when performing tests with the RTC, was with addressing Port B on the

CML12S, namely. For some reason, we were able to communicate with all of the ports except Port B. All of

the ports and individual pins on the MCU are labeled next to them on the board, and there are two separate

designations next to Port B (see Figure 12). We are not exactly sure what this extra designation is so we have

decided, in the interest of time, to forego the use of that port and move these connections to Port T, as it was not

being used. This change can be seen in the updated control schematic.

Page 19 of 108

Figure 12: Port B of the CML12S

 Further understanding how to use this RTC chip and its incorporation into the Time Keeping System

helps us to realize our design objectives. This RTC allows us to keep the time and to use two separate alarm

features to reveal a fresh meal at a user programmed time and to allow for a delay in the RFID reader program.

This delay will allow time for the forbidden pet to move away from the bowl before the program checks to see

if the pet is still there. It also allows the user the freedom of easily changing the time of day or rotation time

without needing to change software programming or hardware.

The Display System:

(Primarily responsible team member: Rachel Heil)

 The main display system is an Liquid Crystal Display (LCD) panel, which will allow the user to

interface with the CML12S in order to set the clock and the meal times.

 The requirements for the LCD panel are as follows:

1. That it is cost effective

2. That it is compatible with the CML12S microcontroller

3. That it be capable of displaying the time and text necessary for setting the feeder

Page 20 of 108

Figure 13: The selected LCD panel and its connector.

 The LCD panel that was selected was inexpensive and it was created to work with the CML12S [1].

This addresses the first two requirements above. Since the last progress report, we have successfully

established communication between the CML12S and the LCD panel, and displayed text on all four lines of the

LCD. This was accomplished using free code provided by Axiom (see Appendix C). This means that we now

have the ability to program what we would like to appear on the LCD panel, satisfying requirement number 3.

The main problem we encountered with the LCD panel was creating the programming necessary to

display text to the LCD. After a couple weeks of the researching and trial and error, we contacted the

manufacturer, Axiom, and were provided with guidance and working freeware code including an LCD driver

and an LCD test (see Appendix C). We were still not sure exactly how to use it; we repeatedly received

compilation errors when we tried to compile either of the programs. We found that we needed to include both

of the code files within the same project in order for it to compile correctly. Originally, we were using the test

program only, and would receive errors indicating that that the functions in the program were undefined. The

second program that needed to be used is where these functions were defined. After compiling the project with

both files included we received no errors, and the designated text was displayed on the LCD screen.

The LCD panel now meets all of the necessary requirements. It is cost effective and compatible with

our microcontroller. In addition, we now have full communication with our LCD display panel and are able to

use the previously mentioned programs in order to tell the LCD exactly what text to display.

Page 21 of 108

The IDE:

(Primarily responsible team members: Rachel Heil)

 The Integrated Development Environment (IDE) is the software in which we will write and compile the

code that will tell the CML12S what to do. The requirements for the IDE are as follows:

1. That it is cost effective

2. That it allows each team member to have a copy of the software in order to program

simultaneously

3. That it be compatible with the HC12 microcontroller

4. That it allow us to program using the C language

5. That it be easy to use

Originally, we had chosen to use Embedded GNU for our IDE [1]. The reason we changed our IDE is

that we needed administrator rights on our computers in order to compile a program. This became an issue

because most of the team members are working on laptops, which do not have the necessary rights. For this

reason, we decided to switch our IDE. The alternative we chose to use is ImageCraft’s ICCV7 for CPU12.

ICCV7 was selected for a few reasons. The first was that it was created to operate with the HC12

family, which includes the CML12S that we are using, so we knew that it is compatible. Also, since we are

within the last 45 days of the semester, we are able to use the free downloadable 45-day trial version, allowing

each of us to have a copy of the software on our individual computers. This allows for simultaneous

programming as per requirement number two. The IDE allows programming in the C language, which makes

for easier programming. Another advantage to using the ImageCraft software is that we have used the ICC11

version of the software previously and know the environment, which means that there is minimal time spent on

learning the IDE itself.

The ICCV7 was chosen because it meets all five of our requirements. It is cost effective, compatible

with our microcontroller, and available to all members of the group at the same time. In addition, the IDE

Page 22 of 108

allows for programming in the C language and is an environment we are familiar with and therefore is easier for

us to use.

The Program:

(Primarily responsible team members: Rachel Heil, Kristine McCarthy, Filip Rege, Alexis Rodriguez-Carlson)

 The requirements for the program have changed slightly in the past weeks as we have begun to write

code and become more familiar with our components. These changes are reflected in the list of requirements

below. The program must:

1. Control the microcontroller and all of the components (Main Program see Appendix B on page 52)

2. Provide a means for the user to set the time (Clockset Program)

3. Provide a means for the user to program the time that the motor will rotate to reveal fresh food (Clockset

Program)

4. Provide a way for the user to suspend operation while refilling the food dishes (all Programs)

5. Keep track of which dish is revealed so that the system knows how far it must rotate to reveal the blank

spot (Feeding Time Program see Appendix D on page 49)

6. Monitor the RTC chip to see if it is sending an alarm signal (Feeding Time Program)

7. Monitor the RFID reader to see if it is receiving a signal from the tag (Pet Detect Program see Appendix

E on page 49; RFID Program see Appendix A on page 49)

8. Provide incremental timing

9. Rotate the motor both clockwise and counter clockwise a specified distance (Motor Rotation Program

see Appendix F on page 66)

 The algorithms and flow charts which have been created since the last progress report are below.

Program Algorithms:

RFID Program:

1. Set DDRP = 0 to configure Port P as in input

Page 23 of 108

2. Set variable A-R equal to the value of Pin 2 of Port P

3. Set TAG equal to variables A-R ANDed together

4. If TAG = 0

a. PET = 1

5. If TAG = 1

a. PET = 0

6. Return PET to main program

Page 24 of 108

Figure 14: Flowchart of RFID subprogram

Page 25 of 108

Clockset Program:

 So far, there is one program that will be affiliated with the RTC. This program is the Clockset Program.

This is the program that allows the user to set the clock and meal times and then rotates the tray back to the

blank spot of the feeder.

Variables: TH, TM, AH, and AM are Time Hour, Time Minute, Alarm Hour, and Alarm Minute respectively.

1. Display greeting “To reset time press button 1, to reset alarm press 2, to exit time set turn the override

switch off.”

2. IF OVERRIDE = 1

a. IF Button 1 = 1

i. Display time

ii. Display “To change hour press button 1, to change minute press button 2, to end, press

button 3”

1. IF Button 1 = 1

a. inc TH

b. update WTC

c. update display

2. IF Button 2 = 1

a. inc TM

b. update WTC

c. update display

3. IF Button 3 = 1

a. go to Line 1

4. IF Button 2 = 1

Page 26 of 108

iii. Display alarm time

iv. Display “To change hour press button 1, to change minute press button 2, to end, press

button 3”

1. IF Button 1 = 1

a. inc AH

b. update WTC

c. update display

2. IF Button 2 = 1

a. inc AM

b. update WTC

c. update display

3. IF Button 3 = 1

a. go to Line 1

3. IF OVERRIDE = 0

a. Rotate counter clockwise BOWL x SLICE (Returns to blank spot)

b. Call Pet Detect

Page 27 of 108

Figure 15: Flowchart for Clockset Program Part 1

Page 28 of 108

Figure 16: Flowchart for Clockset Program Part 2

Page 29 of 108

Motor_CW:

NUM_OF_STATES – eight different styles that are put in Port K

DELAY_MAX – maximum number of counts to create a delay

i – an integer variable that is used in the for loop that creates a time delay before

state_array – a character variable that stores the state valuse that will be input in Port K

steps_to_move – an integerr variable that stores the number of steps that the motor will move

next_state – character variable that selects the next state to put in Port K

1. Set DDRK = 11111111 to configure it as an output

2. Set Port K = 00000000

3. Set steps_to_move to the desired number of steps

4. Set next_state = 0000

5. Set Port K = next_state

6. Set i = 0, check if i < DELAY_MAX

a. If it is, increment i by 1 and go back to step 6

b. If it is not, proceed to the next step

7. Check if steps_to_move > 0

a. If it is, check if next_state > (NUM_OF_STATES -1)

i. If it is, set next_state = 0

b. Otherwise proceed to the next step

c. Set Port K = state_array[next_state]

d. Set i = 0, check if i < DELAY_MAX

i. If it is, increment i by 1 and go back to 7d

e. Increment next_state by 1

f. Decrement steps_to_move by 1

8. End Main

Page 30 of 108

NUM_OF_STATES – eight different styles that are put in Port K

DELAY_MAX – maximum number of counts to create a delay

i – an integer variable that is used in the for loop that creates a time delay before

state_array – a character variable that stores the state valuse that will be input in Port K

steps_to_move – an integerr variable that stores the number of steps that the motor will move

next_state – character variable that selects the next state to put in Port K

9. Set DDRK = 11111111 to configure it as an output

10. Set Port K = 00000000

11. Set steps_to_move to the desired number of steps

12. Set next_state = 0000

13. Set Port K = next_state

14. Set i = 0, check if i < DELAY_MAX

a. If it is, increment i by 1 and check again

b. If it is not, proceed forward

15. Check if steps_to_move > 0

a. If it is, check if next_state < 0

i. If it is, set next_state = (NUM_OF_STATES – 1)

b. Set Port K = state_array[next_state]

c. Set i = 0, check if i < DELAY_MAX, if it is increment i by 1

d. Decrement next_state by 1

e. Decrement steps_to_move by 1

16. End Main

Page 31 of 108

The Motor System:

(Primarily responsible team member: Filip Rege)

 As Figure 17 shows, the motor system consists of the following components: stepping motor, motor

driver, power supply and tray support.

Figure 17: Block Diagram of the Motor System

The Motor Driving System:

Since the last progress report, a lot of progress has been made in the design of the circuit necessary to

use the driver chip. A driver chip is an integrated circuit (IC) that serves two purposes: it controls the flow of

the current through the motor and protects the microcontroller from the motor’s high current. Different types of

drivers exist and one needs to select the appropriate chip depending on the type of motor and its power rating.

The driver chip we chose to use had to meet the following criteria:

1. It had to be capable of handling the voltage (24V DC) and the current (1.5A) necessary for the motor’s

operation [5]

2. It had to be easily interfaced with the microcontroller

3. It had to cost less then $10.00

We have chosen the SanKen manufactured SLA7026M (Figure 18) driver chip. It is a good choice to go

with our motor (the 4118M-06 [1]) because it meets all the requirements. It is capable of handling up to 3.0A

Page 32 of 108

of current and up to 46VDC [6], which is more than enough considering that the motor draws only 1.5A at

24VDC [5] .

Figure 18: SLA7026M Driver Chip

 The CML12S can neither supply nor sink more than 25mA of current [7]. The motor, however, needs at

least 1.0A to operate [5]. Therefore, not only must the current to the motor be delivered from a source other

than the CML12S, but also the microcontroller needs to be protected from the high current of the motor. This is

one of the two functions of the driver circuit, the other being energizing and de-energizing the coils in the motor

in a sequence dictated by the microcontroller. The driver may be thought of as a hub to which the motor, the

power supply, and the microcontroller are connected. It determines what signals may pass and where they go.

Page 33 of 108

Figure 19: Motor Driver Circuit [6]

The main obstacle we have encountered with the driver chip was to determine the values of the resistors

and the capacitors that connect the SLA7026M to the ground on one side and to the microcontroller on the other

side (Figure 19). SanKen, the chip manufacturer, provides a list of recommended values in the datasheet but we

were not sure whether these needed to be recalculated to match our specific power requirements. Finally, with

the help of Joseph Diecidue and professor Badjou, we were able to determine that the recommended resistors

and capacitors were accurate as long as the current was less then 3.0A.

Another problem was that the pins of the SLA7026 are not compatible with the breadboard. They are

not only wider than the holes in the breadboard but also spaced out in way that does not align with the grid of

the breadboard holes. We solved this problem by attaching wires to all the pins, which allowed us to connect

the chip to our breadboard. As of March 28, we have accumulated all the components for the driver circuit and

started assembling it.

The driver chip is the hardware which interfaces the CML12S to the motor. The CML12S will control

the motor through two programs, one which will turn the motor clockwise a distance to move to the next bowl

Page 34 of 108

and another which will turn the motor counter clockwise the same distance. The program will accomplish this

by powering on the magnets in the motor in order for a specified length of time. When the tray needs to turn a

longer distance, the program will run multiple times. Please see the program section for more information.

The Tray Support System:

The function of the dish tray support system is to isolate the weight of the tray with the dishes and pet

food, a maximum of two pounds, from the motor’s shaft. Stepping motors are designed to carry torsional loads

but not axial loads. In other words, they are not equipped to withstand loads that either pull or push on the

shaft. A model of the Tray Support System is shown in Figure 20.

Figure 20: Tray Support System mounted to the Feeder’s Base

The central piece of the load bearing system is a 3.8”x 3.8”x 0.2”plate machined from 6061 aluminum

alloy. The rotary table that will interface between the dish tray and the support system is mounted on top of this

plate (Figure 20). As can be seen from Figure 20, the motor is attached to the bottom of the plate so that its

shaft protrudes through the center of the plate and the center of the rotary table. Both the shaft of the motor and

the hole in the center of the dish tray are keyed to ensure secure fit without slipping. The plate is attached to the

Page 35 of 108

base of the feeder with four bolts. In order to make sure that the bearing plate is parallel to the base, four glass-

filled Delrin tubes of uniform length fit over the bolts to support the plate in each corner.

As of the weekend of March 28, all the parts of the support system have been acquired, including the

hardware, and the bearing plate has been machined from 6061 aluminum alloy. The only thing that is left to do

is to assemble the system.

The Feeder Enclosure:

(Primarily responsible team member: Filip Rege)

The main function of the feeder enclosure is to provide protection for the electronics inside the feeder

and to prevent the pet from accessing the food stored for later feedings. In order to achieve these goals it has to:

1. Be strong enough to withstand the weight of the pet, should the pet stand on it

2. Be capable of preventing the pet from accessing food stored for later meals

3. Provide access to the food at the same location every time

4. Be heavy enough to prevent the pet from turning it over

5. Have a removable cover so the user can easily access the bowls

6. Have easily removable dish-washer safe bowls

Figure 21: Block Diagram of the Feeder Enclosure Subsystem

Page 36 of 108

Figure 22: Model of the Smart Pet Feeder

 The only change to the feeder enclosure system since the last reporting period is that the base has been

machined (see Figure 23). We chose to use polyvinyl chloride (PVC) because it has relatively high density,

which will help to keep the product’s center of gravity low to the ground. The other reason we chose this

material was that we had access to some scraps and, therefore, it did not add any additional cost to our budget.

Another interesting property of PVC, that we discovered just recently, is that it is static dissipative so we do not

have to worry about a charge building up on the feeder base that might pose a potential danger to the electronic

components.

Figure 23: Feeder Base machined from gray PVC

Page 37 of 108

 Within the time that remains to the project’s deadline, we are planning to build the top and the sides of

the enclosure (Figure 22). Currently, we intend to use either a sheet of aluminum or a sheet of stainless steel

and wrap it around the heptagonal-shaped base. Also, we are planning to use a 3/16” thick sheet of transparent

acrylic for the top of the feeder so that the user can easily see how much food there is left in the feeder and plan

to refill it accordingly. The lid will be attached to the rest of the feeder with a few thumbscrews that will make

it both easy for the user to remove it and highly unlikely for the pet to pull it off, thus gaining access to all the

food inside.

Problem Areas:

 In the past month, we have encountered several problems. These problems have been discussed in

more detail in the sections above, and have included issues using our original IDE, problems downloading

programs to the CML12S, problems getting the LCD programs to compile, confusion about how to use the

RTC, and confusion about the values of the resistors and capacitors in the motor driving circuit.

 The original IDE we choose appeared to meet all of our requirements, but then it turned out that it would

not work properly on our laptops, where we do not have administrative rights. We found that we were within

45 days of the end of the project and so we downloaded ImageCraft’s ICCV7 to use as our compiler. For a

while, it seemed that none of the programs compiled with ICCV7 were downloading to the CML12S, but it

turned out that we were simply misunderstanding the process to use that program. At this time, we have

successfully downloaded and run several programs, including the programs necessary to use the LCD panel.

 We continue to make progress in our quest to use the RTC as described above. There is still a lot to

figure out, but we are confident that we will be able to program it to perform all of the functions we need from

it.

 Lastly, we have determined the correct values for the capacitors and resistors in the motor driving circuit

and have begun to build it. We hope to see the motor turn in the coming week.

Page 38 of 108

Plans for the Next Reporting Period:

 We plan to finish the prototype of the Smart Pet Feeder during the next reporting period. This involves:

1. Machining of the remaining parts

2. Building of the tray support system

3. Putting the enclosure together

4. Finalizing and debugging the programming

5. Assembling the complete system

6. Lab testing of the system

7. Animal testing of the system

 For details on the tasks to be completed in the next month, please see the Gantt Chart below.

Page 39 of 108

Figure 24: Gantt Chart for the Rest of Project Period Part 1

Page 40 of 108

Figure 25: Gantt Chart for the Rest of Project Period Part 2

Page 41 of 108

 Schedule Status:

 At this time, we are slightly behind schedule in the programming of the RTC and the testing of the

motor. This is due to the issues we had getting the CML12S to communicate with our different computers, the

complexity of the motor driving circuit, and the fact that, having access to only one microcontroller, each

person has limited time to refine the program they are writing. Though we had hoped to be further along in this

process, but are still confidant that we can finish the project on schedule. For more details, please see the Gantt

Chart below.

Page 42 of 108

Figure 26: Gantt Chart for the Past Month Part 1

Page 43 of 108

Figure 27: Gantt Chart for the Past Month Part 2

Page 44 of 108

Project References:

[1] Heil, Rachel, et al. The Smart Pet Feeder: Progress Report 1. 05 Mar. 2008.

[2] “RFID Reader Module (#28140).” Parallax, Inc. Rocklin: 2005.

[3] “DS1286 Watchdog Timekeeper.” Jameco.com. 03 Mar. 2008. <

http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?langId=-

1&storeId=10001&catalogId=10001&productId=133444>

[4] “Hexa to Binary and Decimal converter / convertor.” Easy Calculation.com. 29 Mar. 2008.

<http://www.easycalculation.com/hex-converter.php>

[5] “1.8° Size 17 Super Torque Motor.” Lin Engineering. Santa Clara.

[6] “SLA7024M, SLA7026M, and SMA7029M High-Current PWM, Unipolar Stepper.” Allegro.

Worcester: 1994.

[7] “CML-9S12DP512.” Axman.com. 1 Mar. 2008.

[8] Grant, Matthew . "Quick Start for Beginners to Drive a Stepper Motor". Freescale.com. March 30,

2007. March 17, 2007.

<http://www.freescale.com/files/microcontrollers/doc/app_note/AN2974.pdf?fsrch=1>

[9] “CML-9S12DP256.” Axiom Manufacturing. Garland: 2004.

[10] “MC9S12DP512 Device Guide V01.25.” Freescale Semiconductor, Inc. Chandler: 2005

[11] “DS1286 Watchdog Timekeeper.” Dallas Semiconductor.

[12] “Full size Toggle Switch.” Jameco.com. 03 Mar. 2008. <

http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?langId=-

1&storeId=10001&catalogId=10001&pa=76232&productId=76232>

[13] “Open drain.” Wikipedia.com. 16 Jan. 2008. 29 Feb. 2008.

<http://en.wikipedia.org/wiki/Open_drain>

[14] “Staywell Infra-Red Cat Door.” Moorepet-petdoors.Com. 28 Feb. 2008 <http://www.moorepet-

petdoors.com/PhotoGallery.asp?ProductCode=500US>

Page 45 of 108

[15] “Staywell Infra-Red Collar Key.” Petco.Com. 28 Feb. 2008

<http://www.petco.com/shop/product.aspx?sku=968170&cm_ven=tag&cm_cat=34&cm_pla=968170&cm_

ite=968170>

[16] "Radio-Frequency Identification." Wikipedia. 2 Mar. 2008. Wikimedia Foundation, Inc. 20 Feb.

2008 <http://en.wikipedia.org/wiki/RFID>.

[17] Lewan, Todd. "Chip Implants Linked to Animal Tumors." Washingtonpost.Com. 8 Sept. 2007. The

Associated Press. 2 Mar. 2008 <http://www.washingtonpost.com/wp-

dyn/content/article/2007/09/08/AR2007090800997_pf.html>.

[18] Cheung, Humphrey. "American Medical Association Wants Implantable RFID Chips." TG Daily. 27

June 2007. Tigervision Media. 28 Feb. 2008 <http://www.tgdaily.com/content/view/32663/113/>.

[19] Greene, Thomas C. "Feds Approve Human RFID Implants." The Register. 14 Oct. 2004. 2 Mar. 2008

<http://www.theregister.co.uk/2004/10/14/human_rfid_implants/>.

[20] “PetSafe Electronic SmartDoor Pet Door.” PetFrenzy.com. 3 Mar. 2008.

[21] “Sharp PT481/PT481F/PT483F1 Narrow Acceptance High Sensitivity Phototransistor.” Sharp

Electronics.

[22] “PT501/PT510 TO-18 Type Narrow Acceptance High Sensitivity Phototransistor.” Sharp Electronics.

[23] “PT4800/PT4800F/PT4810/PT4810F/PT4850F Thin Type Phototransistor.” Sharp Electronics.

[24] “QSC112, QSC113, QSC114 Plastic Silicon Infrared Phototransistor.” Fairchild Semiconductor. 2005.

[25] “The Overweight Pet.” ThePetCenter.Com. 25 Jan. 2008

<http://www.thepetcenter.com/imtop/overweight.html>.

[26] “Petmate Café Feeder.” Amazon.com. 25 Jan. 2008

<http://www.amazon.com/gp/product/B0002DI2XC/ref=s9_asin_image_1?pf_rd_m=ATVPDKIKX0DER&

pf_rd_s=center-

2&pf_rd_r=0WDC23RF23M58AJ1CCJG&pf_rd_t=101&pf_rd_p=278240301&pf_rd_i=507846>

Page 46 of 108

[27] “Petmate Le Bistro Electronic Portion-Control Automatic Pet Feeder.” Amazon.com. 25 Jan. 2008

<http://www.amazon.com/gp/product/B000BVWVUA/ref=s9_asin_image_2?pf_rd_m=ATVPDKIKX0DE

R&pf_rd_s=center-

2&pf_rd_r=0WDC23RF23M58AJ1CCJG&pf_rd_t=101&pf_rd_p=278240301&pf_rd_i=507846>.

[28] “Petmate Le Bistro Electronic Portion-Control Automatic Pet Feeder Customer Reviews.”Amazon.com.

25 Jan. 2008

<http://www.amazon.com/review/product/B000BVWVUA/ref=dp_db_cm_cr_acr_txt?%5Fencoding=UTF8

&showViewpoints=1>.

[29] “Perfect Petfeeder Lux Model.” Pillar Pet Products, Inc. 25 Jan. 2008

<http://www.perfectpetfeeder.com/default.html>.

[30] “Pet Product Review: Perfect Petfeeder.” Itchmo: News For Dogs & Cats. 25 Jan. 2008

<http://www.itchmo.com/pet-product-review-perfect-petfeeder-3428>.

[31] “ERGO 8 Day Feeder.” Pet Street Mall. 25 Jan. 2008 <http://www.petstreetmall.com/Automatic-8-

Day-Feeder/5052/1896/>.

[32] “How to Keep Your Dog from Eating Your Cat’s Food.” wikiHow.com. 25 Jan. 2008

<http://www.wikihow.com/Keep-Your-Dog-from-Eating-Your-Cat's-Food>.

[33] “Industry Statistics & Trends”. American Pet Products Manufacturers Association, Inc. 25 Jan. 2008

<http://www.appma.org/press_industrytrends.asp>.

[34] “Do You Like Pets Better Than People?”. CBS News. 25 Jan. 2008

<http://www.cbsnews.com/stories/2007/09/05/opinion/garver/main3234187.shtml>.

[35] “The Pet Economy”. Business Week. 25 Jan. 2008

<http://www.businessweek.com/magazine/content/07_32/b4045001.htm>.

[36] “It’s a Pet Economy”. Sacramento Business Journal. 25 Jan. 2008

<http://www.bizjournals.com/sacramento/stories/2007/08/20/story3.html>.

Page 47 of 108

[37] “The Overweight Pet”. The Pet Center. 25 Jan. 2008

<http://www.thepetcenter.com/imtop/overweight.html>.

[38] “Dog Owner’s Guide: Obesity”. CanisMajor.com. 25 Jan. 2008

<http://www.canismajor.com/dog/obese.html>.

Page 48 of 108

Appendices:

Appendix A: Preliminary C Language RFID Program.. 49

Appendix B: Preliminary C Language Main Program .. 52

Appendix C: C Language LCD Programs ... 55

Appendix D: Preliminary C Language Feeding Time Program .. 60

Appendix E: Preliminary C Language Pet Detect Program... 63

Appendix F: Preliminary C Language Motor Rotation Program... 66

Appendix G: Microcontroller Block Diagram and Datasheet ... 69

Appendix H: Motor Driver Datasheet.. 84

Appendix I: RFID Datasheet ... 91

Appendix J: Real Time Clock Chip Datasheet .. 97

Appendix K: Motor Datasheet ... 105

Appendix L: 24V Power Supply Datasheet ... 107

Page 49 of 108

Appendix A: Preliminary C Language RFID Program

Page 50 of 108

/*
 * RFID program for the Automated Smart Pet Feeder
 * This program will determine if the RFID reader is receiving a signal from
 * an RFID tag.

 * Title: RFID.c
 * By: Alexis Rodriguez-Carlson
 * Date: March 26, 2008

 NOTES:
 * The RFID reader outputs a HIGH (1) signal when it is not receiving a
 signal from a tag. If it is receiving a signal from a tag, it will output
 a unique series of numbers to Port P (PTP) pin 2. In our case we
 don't care about the identifying sequence, only if there is a tag there
 at all. So, we will record the each bit as a seperate variable (A-R) and
 then AND those variables together in another variable called "TAG". The
 zeros in the sequence will result in a zero value for TAG if the forbidden
 pet has approached. If the forbidden pet is present, the program will
 return a value of PET=1 to be used in other programs.
*/

/**header files to be included**/
#include <mc9s12dp512.h>
#include <stdio.h>

/*define variables*/
int A,B,C,E,F,G,H,J,K,L,N,O,P,Q,S,T,U,V; /*sample values from RFID
 reader. Letters D, I,
M, and R
 are missing because
the program
 wouldn't compile
with them for
 reasons I do not
understand.*/

int TAG; /*Value equal to ANDing all
 of the sample
values*/
int PET; /*Variable which is equal to
 1 if the tag is
present*/

rfid(void)
{

DDRP=00; /*this line configures Port P

Page 51 of 108

 as an input*/

/*This section sets the value of each variable equal to the value in PTP ANDed
by 00100000. This mask makes it possible to use only the value at PTP2 to set
the variable values.*/

A = PTP&&00100000;
B = PTP&&00100000;
C = PTP&&00100000;
E = PTP&&00100000;
F = PTP&&00100000;
G = PTP&&00100000;
H = PTP&&00100000;
J = PTP&&00100000;
K = PTP&&00100000;
L = PTP&&00100000;
N = PTP&&00100000;
O = PTP&&00100000;
P = PTP&&00100000;
Q = PTP&&00100000;
S = PTP&&00100000;
T = PTP&&00100000;
U = PTP&&00100000;
V = PTP&&00100000;

TAG = A&&B&&C&&E&&F&&G&&H&&J&&K&&L&&N&&O&&P&&S&&T&&U&&V; /*ANDing
all of the

variables together will
 result
in a value of 0
 if
there is a tag

present*/

if (TAG == 0) /*The RFID reader is detecting a tag, the forbidden pet is
 near*/
{
 PET = 1;
 }
else /*The RFID reader is not detecting a tag, the coast is
 clear!!!*/
{
 PET = 0;
 }

return(PET);}

Page 52 of 108

Appendix B: Preliminary C Language Main Program

Page 53 of 108

/*
 * Main program for the Automated Smart Pet Feeder
 * This program will determine if the override switch is on or off and
 * determine which subroutine to call. The operation of the entire
 * feeder is determined by this program.

 * Title: main.c
 * By: Rachel Heil
 * Date: March 11, 2008

 NOTES:
 * Override Switch:
 Inputs a 5 Volt signal to Port P1 (PP1) at pin 42 indicating it
 is in the on position, set to high (1)
*/

/**header files to be included**/
#include <mc9s12dp512.h>
#include <stdio.h>

/**Set ports necessary to Inputs or Outputs**/
 DDRP_DDRP1 = 0x00; // Port P set to inputs (0 in each bit)
 DDRK_DDRK1 = 0xFF; // PK0:PK3 - Port K (outputs)(1 in each bit)
 DDRT_DDRT1 = 0xFF; // PTT0:PTT5 - Port T (outputs)(1 in each bit)
 DDRS_DDRS1 = 0xFF; // PS0, PS2, PS4, PS6 - Port S (outputs)(1 in each bit)

/**Assign port addresses**/
 DDRP_PTP1 = 0x0025A&&01000000; //address of Port P1

/***Reference Addresses***/
/**Addresses of Direction Registers**/
/* DDRP = 0x025A; //address of DDRP
 DDRK = 0x0033; //address of DDRK
 DDRT = 0x0242; //address of DDRT
 DDRS = 0x024A; //address of DDRS
*/
/**Addresses of ports**/
/*DDRK_PORTK = 0x0032; //address of Port K
 DDRT_PTT = 0x0240; //address of Port T
 DDRS_PTS = 0x0248; //address of Port S
 */

/**Define all functions and subroutines**/
void clockset(void); //defines clock set function
void detect(void); //define pet detect function

Page 54 of 108

void feeding(void); //define feeding time function

/**Define all variables necessary**/

/**Body of main program**/

int main(void) // beginning the main program
{
 if (DDRP_PTP1=1) //Port P1 is set to high, override switch is on
 {
 clockset(); //calls the clockset subroutine
 }
 else //Port P1 is not set to high and override switch is off
 {
 detect(); //calls the petdetect subroutine
 }
 return(0); //signals end of program
}

Page 55 of 108

Appendix C: C Language LCD Programs

Page 56 of 108

/* ===

 lcdtest.c - Test program for LCD.C

 Version: 1.0
 Author: Dusty Nidey, Axiom Manufacturing (www.axman.com)
 Compiler: GNU for 68HC11 & 68HC12 (www.gnu-m68hc11.org)

 This is freeware - use as you like

==
--
*/

#include "..\ports_d256.h"
#include "lcd.h"

main(){
 char keyval;

 LCDInit(); // initialize LCD

 LCDputs("Hello 1234567890_AB"); // line 1
 LCDputs("Line 3 1234567890_AB"); // line 3
 LCDputs("Line 2 1234567890_AB"); // line 2
 LCDputs("Line 4 1234567890_AB"); // line 4
}

// -------------
unsigned char LCDBuf; // holds data and status bits sent to LCD
unsigned char LCDStat; // holds LCD status

#define LCD_DELAYTIME 0x200 // adjust this value Lower for quicker LCD
//performance, Higher if you're seeing garbage on the display

// simple delay loop, waits the specified number of counts
void LCD_delayu(unsigned int ucount){
 while(ucount > 0){
 --ucount;
 // look at your compiler output and count the number of cycles used.
 // add more of these if needed to fine tune the exact delay you want
 // asm("nop");

 }
}
// simple delay loop, LCD_delayu() * LCD_DELAYTIME
void LCD_delaym(unsigned int mcount){
 while(mcount > 0){

Page 57 of 108

 --mcount;
 LCD_delayu(LCD_DELAYTIME);
 }
}

// Simple Serial Driver (SPI) send byte
// sends data byte in global LCDBuf
// return received back value in global LCDStat
void LCDSend(){
 LCD_delaym(1);
 LCDStat = SPI0SR; // clear status of SPI by reading it
 SP0DR = LCDBuf; // send byte

 do{ // wait for status flag to go high
 LCDStat = SPI0SR;
 }while(LCDStat < 0x80);

 LCDStat = SP0DR; // receive value back
}

// writes 4 bit data to lcd port
void lcd_wr_4(char LCDdata){
 // merge lower 4 bits of LCDdata with upper 4 bits of LCDBuf (control bits)
 LCDBuf &= 0xF0;
 LCDBuf |= LCDdata;

 LCDBuf &= ~EN; // enable low
 LCDSend(); // send the data
 LCDBuf |= EN; // enable high
 LCDSend(); // send the data
 LCDBuf &= ~EN; // enable low
 LCDSend(); // send the data
}

// same as above but with delay
void lcd_wr_4d(char LCDdata){
 lcd_wr_4(LCDdata);
 LCD_delaym(50);
}
// Lcd Write 8 bit Data , upper 4 bits first, then lower
void LCD_Write(unsigned char lcdval){
 lcd_wr_4(lcdval >> 4); // send upper 4 bits
 lcd_wr_4(lcdval & 0x0F); // send lower 4 bits
}
// write a COMMAND byte to the LCD
void lcd_cmd(unsigned char cmdval){
 LCDBuf &= ~RS; // clear RS to select LCD Command mode
 LCD_Write(cmdval);
 LCD_delaym(10);
}

Page 58 of 108

/*--
LCDputch

 Send a character to the LCD for display.

 INPUT: datval character to display
--*/
void LCDputch(unsigned char datval){
 LCDBuf |= RS; // set RS to select LCD Data mode
 LCD_Write(datval); // write a DATA byte to the LCD
}

/*--
LCDputs

 Send a string of characters to the LCD. The string must end in a 0x00

 INPUT: sptr pointer to the string
--*/
void LCDputs(char *sptr){
 while(*sptr){
 LCDputch(*sptr);
 ++sptr;
 }
}

/*--
LCDInit

 Initialize LCD port

 --*/
void LCDInit(){

 // Turn on Spi
 SPI0CR1 = 0x52;
 SPI0CR2 = 0x10; // enable /SS
 SPI0BR = 0x00; // set up Spi baud clock rate
 LCDBuf = (WR + EN); // set WR and EN bits
 LCDSend(); // send status to LCD

 // Initialize LCD
 LCDBuf &= ~(RS + EN); // clear RS and EN bits (select lcd Command)
 LCDSend(); // send status to LCD

 // delay's are used because this lcd interface does not provide status
 LCD_delaym(50);

 // set to 4 bit wide mode

Page 59 of 108

 lcd_wr_4d(3); // send 3
 lcd_wr_4d(3); // send 3
 lcd_wr_4d(3); // send 3
 lcd_wr_4d(2); // send 2

 lcd_cmd(0x2c); // 2x40 display
 lcd_cmd(0x06); // display and cursor on
 lcd_cmd(0x0e); // shift cursor right
 lcd_cmd(0x01); // clear display and home cursor
 lcd_cmd(0x80);

 LCDBuf = 0; // Reset Lcd states to rest
 LCDSend(); // send status to LCD
}

Page 60 of 108

Appendix D: Preliminary C Language Feeding Time Program

Page 61 of 108

/* Program Name: Feeding Time
 Written By: Alexis Rodriguez-Carlson
 Revision Date: March 20, 2008
 Purpose: This program determines if the MCU is receiving an alarm signal
 from the RTC. If it is, it rotates the food tray to reveal the
 next meal, if it is not, it calls the Pet Detect program.*/

/**header files to be included**/
#include <mc9s12dp512.h>
#include <stdio.h>

RFID(void); /*sub-program which checks to see if the RFID
 is receiving a signal from the tag*/
ccw(void); /*sub-program which rotates the tray 1 bowl
 counter clockwise*/
cw(void); /*sub-program which rotates the tray 1 bowl
 clockwise*/
timer(void); /*sub-program which used the RTC to count thirty sec*/
clockset(void); /*sub-program which allows user to set the clock
 and meal times*/
detect(int BOWL);

int ALARM; /*variable which will be equal to 0 is the RTC is
 NOT sending an alarm*/
int BOWL; /*variable which indicates which dish is to be
 revealed*/
int COUNTER; /*variable used to count how many times the motor
 rotation program will run*/
int PET; /*variable that will equal 1 if forbidden pet is
 detected*/

/*program code is below*/

feeding(BOWL) /*this program must take the variable BOWL as it
 exists from the other sub-programs, change it, and
 then return the new value so that other
 sub-programs can use*/

{
 if (PTP && 01000000 == 00000000) /*check to see if the manual override switch
 is on. If PTP1 is equal to 1, then the
 IF statement is valid*/
 {
 ALARM = PTP && 00001000; /*Sets ALARM to be equal to 00001000 if PTP4
 is equal to 1, or to 00000000 if PTP4 is
 equal to 0*/

 if (ALARM==00001000) /*check to see if the RTC is sending an
 alarm*/

Page 62 of 108

 {
 BOWL = BOWL+1; /*sets the number of the next bowl to be
 revealed*/
 RFID(); /*call RFID program to see if the forbidden
 pet is near*/

 if (PET==1) /*check to see if the RFID reader is
 receiving a signal*/
 {
 COUNTER=BOWL-1; /*set the variable COUNTER to be equal the
 number of the bowl which is currently
 exposed*/
 while (COUNTER > 0) /*this loop rotates the tray to reveal the
 blank spot*/
 {
 ccw(void); /*calls the counter clockwise rotation
 program*/
 COUNTER = COUNTER-1; /*decrements COUNTER*/
 }
 while (PET==1) /*this loop checks to see if the RFID reader
 is receiving a every thirty seconds*/
 {
 RFID();
 timer(void);
 }
 while (COUNTER < BOWL-1) /*rotates the tray back to the bowl before
 the revealed bowl*/
 {
 cw(void); /*calls the clockwise rotation program*/
 COUNTER = COUNTER +1; /*increments COUNTER*/
 }
 }
 cw(void); /*rotates tray to reveal new bowl*/
 if (BOWL==7) /*resets BOWL to 0 if it has reached 7
 (since there are only 6 bowls*/
 {
 BOWL=0;
 }
 }
 detect(BOWL); /*call the detect program*/
 }
 clockset(void); /*call the clockset program*/
return(BOWL);
}

Page 63 of 108

Appendix E: Preliminary C Language Pet Detect Program

Page 64 of 108

/* Program Name: Pet Detect
 Written By: Alexis Rodriguez-Carlson
 Revision Date: March 20, 2008
 Purpose: This program determines if the MCU is receiving a signal from the
 RFID reader. If it is, it rotates the food tray to the blank spot,
 if it is not, it calls the Feeding Time program.*/

/**header files to be included**/
#include <mc9s12dp512.h>
#include <stdio.h>

/*define sub-programs*/
RFID(void); /*sub-program which checks to see if the RFID
 is receiving a signal from the tag*/
ccw(void); /*sub-program which rotates the tray 1 bowl
 counter clockwise*/
cw(void); /*sub-program which rotates the tray 1 bowl
 clockwise*/
timer(void); /*sub-program which used the RTC to count thirty
 sec*/
clockset(void); /*sub-program which allows user to set the clock
 and meal times*/
feeding(int BOWL); /*sub-program which checks to see if the the RTC
 is sending an alarm signal to indicate a meal
 time*/

/*define variables*/

int ALARM; /*variable which will be equal to 0 is the RTC is
 NOT sending an alarm*/
int BOWL; /*variable which indicates which dish is to be
 revealed*/
int COUNTER; /*variable used to count how many times the motor
 rotation program will run*/

int PET; /*variable which equals 1 if forbidden pet is
 */
int OVERRIDE; /*variable which equals 1 if override is on*/

void detect(BOWL)
{
 OVERRIDE = PTP&&01000000;
 if (OVERRIDE == 00000000) /*check to see if the manual override switch
 is on. If PTP1 is equal to 0, then the
 IF statement is valid*/
 {
 RFID(void);

Page 65 of 108

 if (PET==1) /*check to see if the RFID reader is
 receiving a signal*/
 {
 COUNTER=BOWL; /*set the variable COUNTER to be equal the
 number of the bowl which is exposed*/

 while (COUNTER > 0) /*rotates the tray to reveal the blank spot*/
 {
 ccw(void); /*calls the counter clockwise rotation
 program*/
 COUNTER = COUNTER-1; /*decrements COUNTER*/
 }
 while (PET==1) /*this loop checks to see if the RFID reader
 is receiving a every thirty seconds*/
 {
 RFID();
 timer(void);
 }
 while (COUNTER < BOWL) /*rotates the tray back to the revealed
 bowl*/
 {
 cw(void); /*calls the clockwise rotation program*/
 COUNTER = COUNTER + 1; /*increments COUNTER*/
 }
 }
 feeding(BOWL);
 }
 clockset(void);

}

Page 66 of 108

Appendix F: Preliminary C Language Motor Rotation Program

Page 67 of 108

#define NUM_OF_STATES 8 //There are 8 different states in this particular example.
#define DELAY_MAX 5000 //The maximum # of counts used to create a time delay.
#include <STDIO.h>
#include <hc11.h>

void main(void)
{
/*******************CREATE VARIABLES*******************/
int i; //Used in a for loop

//This array actually contains the state values that will be placed on Port B.
//State #0 corresponds to a value of 0x06, state #1 corresponds to a value of 0x02, etc.

char state_array[NUM_OF_STATES] = {0x06, 0x02, 0x0A, 0x08, 0x09, 0x01, 0x05, 0x04};
 //0110, 0010, 1010, 1000, 1001, 0001, 0101, 0100)
int steps_to_move; //The # of rotational steps the motor will make.
char next_state; //Used to select the next state to put in register B.

/********************SET UP PORT B********************/
//DDRK = 0xFF; //Writing 0xFF to DDRK sets all bits of Port K to act as output.

PORTB = 0; //Init Port B by writing a value of zero to Port B.
/**/

steps_to_move = 1; //Set the # of steps to move. An arbitrary positive # can be used.

next_state = 0; //Init next_state to state 0. next_state can start from any state
 //within the range of possible states in this example, 0-7.

PORTB = state_array[next_state];//Init Port B to the starting state. In this example,
 //since only 4 pins are needed to control the motor,
only
 //the lower nibble of Port B is being used. This line
 //selects state 0 and places the corresponding value
 //(0x06) in the lower nibble of Port B.

for(i = 0; i < DELAY_MAX; i++)
{
 //Wait here for a while.
}
while (steps_to_move > 0)
{
 if (next_state > (NUM_OF_STATES - 1)) //If next_state is greater than the highest
 //available state, 7, then cycle back to 0
 {
 next_state = 0;
 }

Page 68 of 108

 PORTB = state_array[next_state]; //Place new value in Port B. Rotation may be
observed
 for(i = 0; i < DELAY_MAX; i++)
 {
 //Wait here for a while.
 }
 next_state++; //Increment next_state. Cycling though the states

causes
 //rotation in one direction. Decrementing states

causes
 //opposite rotation.

 steps_to_move--; //Subtract 1 from the total # of steps remaining to be

//moved.
}

//The following code rotates the motor back in the opposite direction.

steps_to_move = 100;
while (steps_to_move > 0)
{
 if (next_state < 0)
 {
 next_state = (NUM_OF_STATES - 1);
 }
 PORTB = state_array[next_state];
 for(i = 0; i < DELAY_MAX; i++)
 {
 //Wait here for a while.
 next_state--; }
 steps_to_move--;
}
} //End of Main

Page 69 of 108

Appendix G: Microcontroller Block Diagram and Datasheet

Page 70 of 108

Page 71 of 108

Page 72 of 108

Page 73 of 108

Page 74 of 108

Page 75 of 108

Page 76 of 108

Page 77 of 108

Page 78 of 108

Page 79 of 108

Page 80 of 108

Page 81 of 108

Page 82 of 108

Page 83 of 108

Page 84 of 108

Appendix H: Motor Driver Datasheet

Page 85 of 108

Page 86 of 108

Page 87 of 108

Page 88 of 108

Page 89 of 108

Page 90 of 108

Page 91 of 108

Appendix I: RFID Datasheet

Page 92 of 108

Page 93 of 108

Page 94 of 108

Page 95 of 108

Page 96 of 108

Page 97 of 108

Appendix J: Real Time Clock Chip Datasheet

Page 98 of 108

Page 99 of 108

Page 100 of 108

Page 101 of 108

Page 102 of 108

Page 103 of 108

Page 104 of 108

Page 105 of 108

Appendix K: Motor Datasheet

Page 106 of 108

Page 107 of 108

Appendix L: 24V Power Supply Datasheet

Page 108 of 108

